Tag Archives: 算法

kNN 的花式用法

kNN (k-nearest neighbors)作为一个入门级模型,因为既简单又可靠,对非线性问题支持良好,虽然需要保存所有样本,但是仍然活跃在各个领域中,并提供比较稳健的识别结果。 说到这里也许你会讲,kNN 我知道啊,不就是在特征空间中找出最靠近测试样本的 k 个训练样本,然后判断大多数属于某一个类别,那么将它识别为该类别。 这就是书上/网络上大部分介绍 kNN 的说辞,如果仅仅如此,我也不用写这篇文章了。事实上,kNN 用的好,它真能用出一朵花来,越是基础的东西越值得我们好好玩玩,不是么? 第一种:分类 避免有人不知道,还是简单回顾下 kNN 用于分类的基本思想。 针对测试样本 Xu,想要知道它属于哪个分类,就先 for 循环所有训练样本找出离 Xu 最近的 K 个邻居(k=5),然后判断这 K个邻居中,大多数属于哪个类别,就将该类别作为测试样本的预测结果,如上图有4个邻居是圆形,1是方形,那么判断 Xu 的类别为 “圆形”。 第二种:回归 根据样本点,描绘出一条曲线,使得到样本点的误差最小,然后给定任意坐标,返回该曲线上的值,叫做回归。那么 kNN 怎么做回归呢?

Loading

Posted in 人工智能 | Tagged , , | 1 Comment

如何实现和优化 SVM(支持向量机)?

学习 SVM 的最好方法是实现一个 SVM,可讲理论的很多,讲实现的太少了。 假设你已经读懂了 SVM 的原理,并了解公式怎么推导出来的,比如到这里: SVM 的问题就变成:求解一系列满足约束的 alpha 值,使得上面那个函数可以取到最小值。然后记录下这些非零的 alpha 值和对应样本中的 x 值和 y 值,就完成学习了,然后预测的时候用: 上面的公式计算出 f(x) ,如果返回值 > 0 那么是 +1 类别,否则是 -1 类别,先把这一步怎么来的,为什么这么来找篇文章读懂,不然你会做的一头雾水。 那么剩下的 SVM 实现问题就是如何求解这个函数的极值。方法有很多,我们先找个起点,比如 Platt 的 SMO 算法,它后面有伪代码描述怎么快速求解 SVM 的各个系数。 第一步:实现传统的 SMO 算法 现在大部分的 … Continue reading

Loading

Posted in 人工智能 | Tagged , , | 1 Comment

如何实现传统神经网络?

传统神经网络最早我 2008 年我用 C 实现过一版,当时打算用它来炒股,结果一塌糊涂,不过程序是调试通顺了,主要实现了四个模块: 神经元:存储权重和激励函数,能够根据输入矢量计算出单一输出值。 层:由多个神经元组成一个层,不同层的输入输出可以串起来。 网络:由多个层串起来的网络结构。 训练:BP 算法训练每层上不同神经元的权重。 今年拿出来整理了一下,补写了很多注释,并又照着 C 版本实现了一个 Python 版本的(非 numpy 实现),没用 numpy,因为我觉得 numpy 矩阵套矩阵一串操作猛如虎,看起来会比较头疼,就用基础类型写清楚每步运算会更清晰一些。 项目地址: https://github.com/skywind3000/ml/tree/master/NeuralNetwork 包含两个实现,C 和 Python,神经网络的正向推理是很简单的,就是一路乘加调函数,直接看代码和注释问题不大;但要看懂后面的训练代码,会碰到 BP 算法这个难点,说白了就是要理解什么是链式求导: 感觉讲的最清楚的就是 cs231n 的: Lecture 4 – Backpropagation and Neural Networks 先前看过很多其它二手内容云里雾里讲半天,真的很难明白,但 cs231n 的视频,顺着一步步从最后推导过来,一下就能让你明白怎么回事情,建议找这节课的视频出来看一看。 … Continue reading

Loading

Posted in 人工智能 | Tagged , , | Leave a comment

基础优化-最不坏的哈希表

哈希表性能优化的方法有很多,比如: 使用双 hash 检索冲突 使用开放+封闭混合寻址法组织哈希表 使用跳表快速定位冲突 使用 LRU 缓存最近访问过的键值,不管表内数据多大,短时内访问的总是那么几个 使用更好的分配器来管理 key_value_pair 这个节点对象 上面只要随便选两条你都能得到一个比 unordered_map 快不少的哈希表,类似的方法还有很多,比如使用除以质数来归一化哈希值(x86下性能最好,整数除法非常快,但非x86就不行了,arm还没有整数除法指令,要靠软件模拟,代价很大)。 哈希表最大的问题就是过分依赖哈希函数得到一个正态分布的哈希值,特别是开放寻址法(内存更小,速度更快,但是更怕哈希冲突),一旦冲突多了,或者 load factor 上去了,性能就急剧下降。 Python 的哈希表就是开放寻址的,速度是快了,但是面对哈希碰撞攻击时,挂的也是最惨的,早先爆出的哈希碰撞漏洞,攻击者可以通过哈希碰撞来计算成千上万的键值,导致 Python / Php / Java / V8 等一大批语言写成的服务完全瘫痪。 后续 Python 推出了修正版本,解决方案是增加一个哈希种子,用随机数来初始化它,这都不彻底,开放寻址法对hash函数的好坏仍然高度敏感,碰到特殊的数据,性能下降很厉害。 经过最近几年的各种事件,让人们不得不把目光从“如何实现个更快的哈希表”转移到 “如何实现一个最不坏的哈希表”来,以这个新思路重新思考 hash 表的设计。 哈希表定位主要靠下面一个操作: index_pos = hash(key) … Continue reading

Loading

Posted in 编程技术 | Tagged | 2 Comments

AVL/RBTREE 实际比较

网上对 AVL被批的很惨,认为性能不如 rbtree,这里给 AVL 树平反昭雪。最近优化了一下我之前的 AVL 树,总体跑的和 linux 的 rbtree 一样快了: 他们都比 std::map 快很多(即便使用动态内存分配,为每个新插入节点临时分配个新内存)。 项目代码在:skywind3000/avlmini 其他 AVL/RBTREE 评测也有类似的结论,见:STL AVL Map 谣言1:RBTREE的平均统计性能比 AVL 好 统计下来一千万个节点插入 AVL 共旋转 7053316 次(先左后右算两次),RBTREE共旋转 5887217 次,RBTREE看起来少是吧?应该很快?但是别忘了 RBTREE 再平衡的操作除了旋转外还有再着色,每次再平衡噼里啪啦的改一片颜色,父亲节点,叔叔,祖父,兄弟节点都要访问一圈,这些都是代价,再者平均树高比 AVL 高也成为各项操作的成本。 谣言2:RBTREE 一般情况只比 AVL 高一两层,这个代价忽略不计 纯粹谣言,随便随机一下,一百万个节点的 RBTREE … Continue reading

Loading

Posted in 编程技术 | Tagged | 1 Comment

如何实现移动设备的通用手势识别?

移动设备多用手势进行输入,用户通过手指在屏幕上画出一个特定符号,计算机识别出来后给予响应的反应,要比让用户点击繁琐的按钮为直接和有趣,而如果为每种手势编写一段识别代码的话是件得不偿失的事情。如何设计一种通用的手势识别算法来完成上面的事情呢? 我们可以模仿笔记识别方法,实现一个简单的笔画识别模块,流程如下:   第一步:手势归一化 1. 手指按下时开始记录轨迹点,每划过一个新的点就记录到手势描述数组guesture中,直到手指离开屏幕。 2. 将gesture数组里每个点的x,y坐标最大值与最小值求出中上下左右的边缘,求出该手势路径点的覆盖面积。 3. 手势坐标归一化:以手势中心点为原点,将gesture里顶点归一化到-1<=x<=1, -1<=y<=1空间中。 4. 数组长度归一化:将手势路径按照长度均匀划分成32段,用共32个新顶点替换guestue里的老顶点。   第二步:手势相似度 1. 手势点乘:g1 * g2 = g1.x1*g2.x1 + g1.y1*g2.y1 + … + g1.x32*g2.x32 + g1.y32*g2.y32 2. 手势相似:相似度(g1, g2)=g1*g2/sqrt(g1*g1 + g2*g2)   由此我们可以根据两个手势的相似度算成一个分数score。用户输入了一个手势g,我们回合手势样本中的所有样本g1-gn打一次相似度分数,然后求出相似度最大的那个样本gm并且该分数大于某个特定阀值(比如0.8),即可以判断用户输入g相似于手势样本 gm !

Loading

Posted in 人工智能, 编程技术 | Tagged | 4 Comments

快速可靠协议-KCP

KCP是一个快速可靠协议,能以比 TCP浪费10%-20%的带宽的代价,换取平均延迟降低 30%-40%,且最大延迟降低三倍的传输效果。纯算法实现,并不负责底层协议(如UDP)的收发,需要使用者自己定义下层数据包的发送方式,并以 callback的方式提供给 KCP。连时钟都需要外部传递进来,内部不会有任何一次系统调用。 整个协议只有 ikcp.h, ikcp.c两个源文件,可以方便的集成到用户自己的协议栈中。也许你实现了一个P2P,或者某个基于 UDP的协议,而缺乏一套完善的 ARQ可靠协议实现,那么简单的拷贝这两个文件到现有项目中,稍微编写两行代码,即可使用。 URL:https://github.com/skywind3000/kcp

Loading

Posted in 编程技术, 网络编程 | Tagged , | 21 Comments

体育竞技游戏的团队AI

很多人问游戏AI该怎么做?随着游戏类型的多元化,非 MMO或者卡牌的游戏越来越多,对AI的需求也越来越强了。而市面上关于 AI的书,网上找得到的文章,也都流于一些只言片语的认识,理论化的套路,和一些简单的 DEMO,离真正的项目差距甚远,无法前后衔接成一条线,更无法真正落地到编码。 国内真正做过游戏AI的少之又少,东拉西扯的人很多,真正做过项目的人很少,因为国内主要以MMO为主,RTS比较少,体育竞技类游戏更少,而从AI的难度上来看,应该是:MMO < FPS < RTS < 体育竞技。作为实际开发过AI的人,给大家科普一下,什么叫做硬派AI。 硬派游戏AI,不是虚无缥缈的神经网络,用神经网络其实是一个黑洞,把问题一脚踢给计算机,认为我只要训练它,它就能解决一切问题的懒人想法。更不是遗传算法和模糊逻辑,你想想以前8位机,16位机上就能有比较激烈对抗的足球游戏、篮球游戏,那么差的处理器能做这些计算么? 硬派游戏AI,就是状态机和行为树。状态机是基本功,行为树可选(早年AI没行为树这东西,大家都是hard code的)。大部分人说到这里也就没了,各位读完还是无法写代码。因为没有把最核心的三个问题讲清楚,即:分层状态机、决策支持系统、以及团队角色分配。下面以我之前做的篮球AI为例,简单叙述一下:   何为分层状态机? 每个人物身上,有三层状态机:基础层状态机、行为层状态机、角色层状态机。每一层状态机解决一个层次的复杂度,并对上层提供接口,上层状态机通过设置下层状态机的目标实现更复杂的逻辑。 基础状态机:直接控制角色动画和绘制、提供基础的动作实现,为上层提供支持。 行为状态机:实现分解动作,躲避跑、直线移动、原地站立、要球、传球、射球、追球、打人、跳。 角色状态机:实现更复杂的逻辑,比如防射球、篮板等都是由N次直线运动+跳跃或者打人完成。 每一层状态机都是通过为下一层状态机设定目标来实现控制(目标设定后,下层状态机将自动工作,上层不用关心动画到底播到哪了,现在到底是跑是跳),从而为上层提供更加高级拟人化的行为,所有状态机固定频率更新(如每秒10次),用于判断状态变迁和检查底层目标完成情况。最高层的角色状态机的工作由团队AI来掌控,即角色分配的工作。而行为状态机以上的状态抉择,比如回防,到底是跑到哪一点,射球,到底在哪里起跳,路径是怎样的,则由决策支持系统提供支持。

Loading

Posted in 人工智能, 游戏开发 | Tagged , | 2 Comments